Volume 1, Issue 4 (Journal of Clinical and Basic Research(JCBR) 2017)                   jcbr 2017, 1(4): 1-8 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Arab Zoozani M, Ghaemi E A, Jamalli A. Frequency of AmpC β-lactamase Resistance in Escherichia coli Isolates from Urinary Tract Infections in Gorgan, Iran. jcbr 2017; 1 (4) :1-8
URL: http://jcbr.goums.ac.ir/article-1-96-en.html
1- Department of Microbiology, Faculty of Medical Sciences, Golestan University of Medical Sciences, Gorgan, Iran
2- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
Abstract:   (5363 Views)
Introduction: AmpC β-lactamases are among the most important cephalosporinases. Production of AmpC β-lactamase in microorganisms is often associated with multidrug resistance and limited treatment options. This study aimed to determine antimicrobial susceptibility pattern and frequency of AmpC β-lactamase genes in Escherichia coli strains isolated from urinary tract infections. Materials and Methods: The study included 154 E. coli isolates from urine samples of patients in medical centers of Gorgan, Iran. Cefoxitin-resistance was evaluated by the Kirby-Bauer method.  Cefoxitin-resistant strains were evaluated using cefoxitin disks alone and combined with boronic acid to confirm presence of AmpC β-lactamase. Presence of MOX gene was investigated by polymerase chain reaction. Results: Among the 154 E. coli isolates, 37 (24%) were cefoxitin-resistant, 16 of which were found to be AmpC β-lactamase-positive in the phenotypic test. In addition, the MOX gene was found in two isolates. Conclusions: The frequency of AmpC β-lactamase-producing E. coli and MOX gene in Gorgan is close to the regional and national average. 
Full-Text [PDF 970 kb]   (2026 Downloads)    
Article Type: Research | Subject: Microbiology

References
1. Toval F, Köhler C-D, Vogel U, Wagenlehner F, Mellmann A, Fruth A, et al. Characterization of Escherichia coli isolates from hospital inpatients or outpatients with urinary tract infection. Journal of clinical microbiology. 2014;52(2):407-18. [DOI:10.1128/JCM.02069-13]
2. Hosseini-Mazinani SM, Eftekhar F, Milani M, Ghandili S. Characterization of β-Lactamases from Urinary Isolates of Escherichia coli in Tehran. Iranian Biomedical Journal. 2007;11(2):95-9.
3. MM SD. Molecular detection of TEM and AmpC (Dha, mox) broad spectrum β-lactamase in clinical isolates of Escherichia coli. Tehran University Medical Journal TUMS Publications. 2010;68(6):315-20.
4. Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrobial agents and chemotherapy. 2010;54(3):969-76. [DOI:10.1128/AAC.01009-09]
5. Mohamudha PR, Harish B, Parija S. Molecular description of plasmid-mediated AmpC β-lactamases among nosocomial isolates of Escherichia coli & Klebsiella pneumoniae from six different hospitals in India. The Indian journal of medical research. 2012;135(1):114. [DOI:10.4103/0971-5916.93433]
6. Singhal S, Mathur T, Khan S, Upadhyay D, Chugh S, Gaind R, et al. Evaluation of methods for AmpC beta-lactamase in gram negative clinical isolates from tertiary care hospitals. Indian journal of medical microbiology. 2005;23(2):120. [DOI:10.4103/0255-0857.16053]
7. Hussain M, Hasan F, Shah AA, Hameed A, Jung M, Rayamajhi N, et al. Prevalence of class A and AmpC b-lactamases in clinical Escherichia coli isolates from Pakistan Institute of Medical Science, Islamabad, Pakistan. Jpn J Infect Dis. 2011;64(3):249252.
8. Forbes BA, Sahm DF, Weissfeld AS, Trevino E. Bailey & Scott's diagnostic microbiology, Mosby. Inc, St Louis. 2002.
9. Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. Journal of clinical microbiology. 2005;43(8):4163-7. [DOI:10.1128/JCM.43.8.4163-4167.2005]
10. A Amraei S, Eslami G, Taherpour A, Goudarzi H, Hashemi A. Detection of FOX, MOX, and ACT Genes in ESBL-producing Klebsiella pneumoniae Strains. Journal of Mazandaran University of Medical Sciences. 2014;24(118):11-20.
11. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. Journal of clinical microbiology. 2002;40(6):2153-62. [DOI:10.1128/JCM.40.6.2153-2162.2002]
12. Jafari M, Fallah F, Borhan RS, Navidinia M, Karimi A, Tabatabaei SR, et al. The first report of CMY, aac (6′)-Ib and 16S rRNA methylase genes among Pseudomonas aeruginosa isolates from Iran. Archives of Pediatric Infectious Diseases. 2013;1(3):109-12. [DOI:10.5812/pedinfect.11392]
13. Rudresh S, Nagarathnamma T. Two simple modifications of modified three-dimensional extract test for detection of AmpC β-lactamases among the members of family Enterobacteriaceae. Chronicles of young Scientists. 2011;2(1):42. [DOI:10.4103/2229-5186.79349]
14. Shayan S, Bokaeian M, Shahraki S, Saeidi S. Prevalence of AmpC and ESBL Producing E. coli and Antibacterial Effect of Allim sativum on Clinical Isolates Collected from Zahedan Hospitals. Zahedan Journal of Research in Medical Sciences. 2014;16(4):6-10.
15. Mansouri S, Chitsaz M, Haji Hr, Mirzaei M, Gheyni M. Determination of Resistance Pattern of Plasmid-Mediated AmpC. Daneshvar. 2009;16(80):61-70.
16. Mansouri S, Neyestanaki DK, Shokoohi M, Halimi S, Beigverdi R, Rezagholezadeh F, et al. Characterization of AmpC, CTX-M and MBLs Types of β-lactamases in Clinical Isolates of Klebsiella pneumoniae and Escherichia coli Producing Extended Spectrum β-lactamases in Kerman, Iran. Jundishapur Journal of Microbiology. 2014;7(2). [DOI:10.5812/jjm.8756]
17. Ding H, Yang Y, Lu Q, Wang Y, Chen Y, Deng L, et al. The prevalence of plasmid-mediated AmpC β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from five children's hospitals in China. European journal of clinical microbiology & infectious diseases. 2008;27(10):915-21. [DOI:10.1007/s10096-008-0532-4]
18. Reuland EA, Hays JP, de Jongh DM, Abdelrehim E, Willemsen I, Kluytmans JA, et al. Detection and occurrence of plasmid-mediated AmpC in highly resistant gram-negative rods. PloS one. 2014;9(3):e91396. [DOI:10.1371/journal.pone.0091396]
19. Polsfuss S, Bloemberg GV, Giger J, Meyer V, Böttger EC, Hombach M. Practical approach for reliable detection of AmpC beta-lactamase-producing Enterobacteriaceae. Journal of clinical microbiology. 2011;49(8):2798-803. [DOI:10.1128/JCM.00404-11]
20. Thukral S. Detection and Characterization of AmpC B-Lactamases in Indian Clinical Isolates of Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca. Universal Journal of Microbiology Research. 2013;1(2):15-21.
21. Helmy MM, Wasfi R. Phenotypic and molecular characterization of plasmid mediated AmpC β-lactamases among Escherichia coli, Klebsiella spp., and Proteus mirabilis isolated from urinary tract infections in Egyptian hospitals. BioMed research international. 2014;2014.
22. Shafiq M, Rahman H, Qasim M, Ayub N, Hussain S, Khan J, et al. Prevalence of plasmid-mediated AmpC β-lactamases in Escherichia coli and Klebsiella pneumoniae at tertiary care hospital of Islamabad, Pakistan. European Journal of Microbiology and Immunology. 2013;3(4):267-71. [DOI:10.1556/EuJMI.3.2013.4.5]
23. Upadhyay S, Sen MR, Bhattacharjee A. Diagnostic utility of boronic acid inhibition with different cephalosporins against Escherichia coli producing AmpC β-lactamases. Journal of medical microbiology. 2011;60(5):691-3. [DOI:10.1099/jmm.0.026310-0]
24. Tan TY, Ng SY, Teo L, Koh Y, Teok CH. Detection of plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis. Journal of clinical pathology. 2008;61(5):642-4. [DOI:10.1136/jcp.2007.053470]
25. Fallah F, Vala MH, Goudarzi H, Hashemi A, Taherpour A, Shamloo KB, et al. Identification of extended-spectrum-beta-lactamases (ESBLs), metallo-beta-lactamases (MBLs), Amp-C and KPC-lactamases among Klebsiella pneumoniae isolated from adults and pediatric patients in Iran. African Journal of Microbiology Research. 2013;7(25):3254-61. [DOI:10.5897/AJMR12.2361]
26. Manchanda V, Singh NP. Occurrence and detection of AmpC β-lactamases among Gram-negative clinical isolates using a modified three-dimensional test at Guru Tegh Bahadur Hospital, Delhi, India. Journal of Antimicrobial Chemotherapy. 2003;51(2):415-8. [DOI:10.1093/jac/dkg098]
27. Wassef M, Behiry I, Younan M, El Guindy N, Mostafa S, Abada E. Genotypic identification of AmpC β-lactamases production in Gram-negative bacilli isolates. Jundishapur Journal of Microbiology. 2014;7(1): e8556. [DOI:10.5812/jjm.8556]
28. Shanthi J, Balagurunathan R. Characterisation of heteroresistant subcolonies for MBL, AmpC genes in Klebsiella pneumoniae and Acinetobacter baumannii. Indian journal of medical microbiology. 2014;32(2):210. [DOI:10.4103/0255-0857.129869]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Clinical and Basic Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).