1. Hatfull GF. Dark Matter of the Biosphere: the Amazing World of Bacteriophage Diversity. J Virol. 2015;89(16):8107-10. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
2. Suttle CA. Marine viruses - major players in the global ecosystem. Nat Rev Microbiol. 2007;5(10):801-12. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
3. Roux S, Enault F, Robin A, Ravet V, Personnic S, Theil S, et al. Assessing the Diversity and Specificity of Two Freshwater Viral Communities through Metagenomics. PLoS One. 2012;7(3):e33641. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
4. Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, et al. Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A. 2002;99(22):14250-5. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
5. Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N, Miya M, et al. Phylogenetic classification of bony fishes. BMC Evol Biol. 2017;17(1):162. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
6. Kurath G, Winton J. Complex dynamics at the interface between wild and domestic viruses of finfish. Curr Opin Virol. 2011;1(1):73-80. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
7. Geoghegan JL, Di Giallonardo F, Cousins K, Shi M, Williamson JE, Holmes EC. Hidden diversity and evolution of viruses in market fish. Virus Evol. 2018;4(2):vey031. . [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
8. Friedman M. The early evolution of ray-finned fishes. Palaeontology. 2015;58(2):213-28. [
View at Publisher] [
DOI] [
Google Scholar]
9. Romano C. A Hiatus Obscures the Early Evolution of Modern Lineages of Bony Fishes. Front Earth Sci (Lausanne). 2021;8:618853. [
View at Publisher] [
DOI] [
Google Scholar]
10. Hughes LC, Ortí G, Huang Y, Sun Y, Baldwin CC, Thompson AW, et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data.Proc Natl Acad Sci U S A. 2018;115(24):6249-54. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
11. Vaitla B, Collar D, Smith MR, Myers SS, Rice BL, Golden CD. Predicting nutrient content of ray-finned fishes using phylogenetic information. Nat Commun. 2018;9(1):3742. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
12. Suttle CA, Chan AM, Cottrell MT. Infection of phytoplankton by viruses and reduction of primary productivity. Nature. 1990;347(6292):467-9. [
View at Publisher] [
DOI] [
Google Scholar]
13. Proctor LM, Fuhrman JA. Viral mortality of marine bacteria and cyanobacteria. Nature. 1990;343(6253):60-2. [
View at Publisher] [
DOI] [
Google Scholar]
14. Aswad A, Katzourakis A. A novel viral lineage distantly related to herpesviruses discovered within fish genome sequence data. Virus Evol. 2017;3(2):vex016. [
View at Publisher] [
DOI] [
Google Scholar]
15. Ruboyianes R, Worobey M. Foamy-like endogenous retroviruses are extensive and abundant in teleosts. Virus Evol. 2016;2(2):vew032.. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
16. Parry R, Wille M, Turnbull OMH, Geoghegan JL, Holmes EC. Divergent Influenza-Like Viruses of Amphibians and Fish Support an Ancient Evolutionary Association. Viruses. 2020;12(9):1042. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
17. López-Bueno A, Mavian C, Labella AM, Castro D, Borrego JJ, Alcami A, et al. Concurrence of Iridovirus, Polyomavirus, and a Unique Member of a New Group of Fish Papillomaviruses in Lymphocystis Disease-Affected Gilthead Sea Bream. J Virol. 2016;90(19):8768-79. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
18. Garza DR, Dutilh BE. From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems. Cell Mol Life Sci. 2015;72(22):4287-308. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
19. Herath D, Jayasundara D, Ackland D, Saeed I, Tang SL, Halgamuge S. Assessing Species Diversity Using Metavirome Data: Methods and Challenges. Comput Struct Biotechnol J. 2017;15:447-55. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
20. Leinonen R, Sugawara H, Shumway M. The sequence read archive. Nucleic Acids Res. 2011;39(Database issue):D19-21. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
21. Afgan E, Baker D, Batut B, Van Den Beek M, Bouvier D, Cech M, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46(W1):W537-44. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
22. Mohebbi A. Analysis of the RNA-Seq Data of Solanum tuberosum Revealed Viral Sequence Reads of a Severe Laboratory-Developed Strain of SARS-CoV-2 Containing Novel Substitutions. Journal of Clinical and Basic Research (JCBR). 2022;6(4):13-8. [
View at Publisher] [
DOI] [
Google Scholar]
23. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-20. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
24. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6):e1005595. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
25. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072-5. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
26. Wood DE, Salzberg SL. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):R46. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
27. Cuccuru G, Orsini M, Pinna A, Sbardellati A, Soranzo N, Travaglione A, et al. Orione, a web-based framework for NGS analysis in microbiology. Bioinformatics. 2014;30(13):1928-9. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
28. Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics. 2011;12:385. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
29. Kerepesi C, Grolmusz V. The "Giant Virus Finder" discovers an abundance of giant viruses in the Antarctic dry valleys. Arch Virol. 2017;162(6):1671-6. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
30. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7(1-2):203-14. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
31. Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M. CAMERA: A Community Resource for Metagenomics. PLoS Biol. 2007;5(3):e75. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
32. Jin SB, Zhang Y, Dong X, Xi QK, Song D, Fu HT, et al. Comparative transcriptome analysis of testes and ovaries for the discovery of novel genes from Amur sturgeon (Acipenser schrenckii). Genet Mol Res. 2015;14(4):18913-27. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
33. Zhang X, Zhou J, Li L, Huang W, Ahmad H, Li H, et al. Full-length transcriptome sequencing and comparative transcriptomic analysis to uncover genes involved in early gametogenesis in the gonads of Amur sturgeon (Acipenser schrenckii). Front Zool. 2020;17:11. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
34. Zhuang P, Kynard B, Zhang L, Zhang T, Zhang Z, Li D. Overview of biology and aquaculture of Amur sturgeon (Acipenser schrenckii) in China. Journal of Applied Ichthyology. 2002;18(4-6):659-64. [
View at Publisher] [
DOI] [
Google Scholar]
35. Zhang Y, Fan Z, Wu D, Li J, Xu Q, Liu H, et al. Dietary magnesium requirement on dietary minerals and physiological function of juvenile hybrid sturgeon (Acipenser schrenckii♀ × Acipenser baerii♂). Aquaculture International. 2021;29(4):1697-709. [
View at Publisher] [
DOI] [
Google Scholar]
36. Cai L, Taupier R, Johnson D, Tu Z, Liu G, Huang Y. Swimming Capability and Swimming Behavior of Juvenile Acipenser schrenckii. J Exp Zool A Ecol Genet Physiol. 2013;319(3):149-55. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
37. Zhong L, Wang M, Li D, Tang S, Zhang T, Bian W, et al. Complete mitochondrial genome of Odontobutis haifengensis (Perciformes, Odontobutiae): A unique rearrangement of tRNAs and additional non-coding regions identified in the genus Odontobutis. Genomics. 2018;110(6):382-8. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
38. WU HL. A revision of the genus Odontobutis from China with description of a new species. J Shanghai Fish Univ. 1993;2:52-61. [
View at Publisher] [
Google Scholar]
39. Zang X, Wang X, Zhang G, Wang Y, Ding Y, Yin S. Complete mitochondrial genome and phylogenic analysis of Odontobutis yaluensis, Perciformes, Odontobutidae. Mitochondrial DNA A DNA Mapp Seq Anal. 2016;27(3):1965-7. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
40. Ju YM, Wu JH, Kuo PH, Hsu KC, Wang WK, Lin FJ, et al. Mitochondrial genetic diversity of Rhinogobius giurinus (Teleostei: Gobiidae) in East Asia. Biochem Syst Ecol. 2016;69:60-6. [
View at Publisher] [
DOI] [
Google Scholar]
41. Snyder DE, Douglas SC. Description and identification of Mooneye, Hiodon tergisus, protolarvae. Trans Am Fish Soc. 1978;107(4):590-4. [
View at Publisher] [
DOI] [
Google Scholar]
42. Hilton EJ, Lavoué S. A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei). Neotropical Ichthyology. 2018;16:e180031. [
View at Publisher] [
DOI] [
Google Scholar]
43. Glenn CL. Seasonal growth and diets of young-of-the-year Mooneye (Hiodon tergisus) from the Assiniboine River, Manitoba. Trans Am Fish Soc. 1978;107(4):587-9. [
View at Publisher] [
DOI] [
Google Scholar]
44. Mclnerny MC, Held JW. First-Year Growth of Seven Co-Occurring Fish Species of Navigation Pool 9 of the Mississippi River. J Freshw Ecol. 1995;10(1):33-41. [
View at Publisher] [
DOI] [
Google Scholar]
45. Naiel M, Elnakeeb M, Vasilyeva L, Sudakova N, Anokhina A, Gewida ahmed GA. Paddlefish, Polyodon spathula: Historical, current status and future aquaculture prospects in Russia. Int Aquat Res. 2021;13(2):89-107. [
View at Publisher] [
DOI] [
Google Scholar]
46. Thurmer CR, Patel RR, Riveros GA, Alexander QG, Ray JD, Netchaev A, et al. Instrumenting Polyodon spathula (Paddlefish) Rostra in Flowing Water with Strain Gages and Accelerometers. Biosensors. 2020;10(4):37. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
47. Kramer N, Phelps Q, Tripp S, Herzog D. Exploitation of paddlefish Polyodon spathula (Walbaum, 1792) in the Mississippi River. J Appl Ichthyol. 2019;35(1):355-9. [
View at Publisher] [
DOI] [
Google Scholar]
48. Elnakeeb MA, Vasilyeva LM, Sudakova NV, Aokhina AZ, Gewida AGA, Alagawany M, et al. Evaluate the metabolism responses of
cultured paddlefish, polyodon spathula (walbaum, 1792), towards some ecological stressors in the volga-caspian basin using fuzzy modeling control. Adv Anim Vet Sci. 2021;9(6):773-86. [
View at Publisher] [
DOI] [
Google Scholar]
49. Di Dario F, de Pinna MC. The supratemporal system and the pattern of ramification of cephalic sensory canals in Denticeps clupeoides (Denticipitoidei, Teleostei): additional evidence for monophyly of Clupeiformes and Clupeoidei. Pap Avulsos Zool. 2006;46:107-23. [
View at Publisher] [
DOI] [
Google Scholar]
50. Picolo F, Grandchamp A, Piégu B, Rolland AD, Veitia RA, Monget P. Genes Encoding Teleost Orthologs of Human Haploinsufficient and Monoallelically Expressed Genes Remain in Duplicate More Frequently Than the Whole Genome. Int J Genomics. 2021;2021:9028667. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
51. Bowes RE, Näslund J, Greenberg L, Bergman E. Cobble substrate in a surface bypass reduces bypass acceptance by common roach Rutilus rutilus. Ecol Eng. 2021;172:106402. [
View at Publisher] [
DOI] [
Google Scholar]
52. Hamilton PB, Lockyer AE, Webster TMU, Studholme DJ, Paris JR, Baynes A, et al. Investigation into Adaptation in Genes Associated with Response to Estrogenic Pollution in Populations of Roach (Rutilus rutilus) Living in English Rivers. Environ Sci Technol. 2020;54(24):15935-45. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
53. Nahon S, Roussel JM, Jaeger C, Menniti C, Kerhervé P, Mortillaro JM, et al. Characterization of trophic niche partitioning between carp (Cyprinus carpio) and roach (Rutilus rutilus) in experimental polyculture ponds using carbon (δ13C) and nitrogen (δ15N) stable isotopes. Aquaculture. 2020;522:735162. [
View at Publisher] [
DOI] [
Google Scholar]
54. Łuczyńska J, Paszczyk B, Łuczyński MJ, Kowalska-Góralska M, Nowosad J, Kucharczyk D. Using Rutilus rutilus (L.) and Perca fluviatilis (L.) as Bioindicators of the Environmental Condition and Human Health: Lake Łańskie, Poland. Int J Environ Res Public Health. 2020;17(20):7595. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
55. Suttle CA. Viruses in the sea. Nature. 2005;437(7057):356-61. [
View at Publisher] [
DOI] [
Google Scholar]
56. Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh DA, Denef VJ, et al. Giant virus diversity and host interactions through global metagenomics. Nature. 2020;578(7795):432-6. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
57. Shi M, Lin XD, Chen X, Tian JH, Chen LJ, Li K, et al. The evolutionary history of vertebrate RNA viruses. Nature. 2018;556(7700):197-202. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
58. dos Santos Oliveira J, Lavell AA, Essus VA, Souza G, Nunes GHP, Benício E, et al. Structure and physiology of giant DNA viruses. Curr Opin Virol. 2021;49:58-67. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
59. Colson P, Scola B La, Raoult D. Giant Viruses of Amoebae: A Journey Through Innovative Research and Paradigm Changes. Annu Rev Virol. 2017;4(1):61-85. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
60. Colson P, Aherfi S, La Scola B, Raoult D. The role of giant viruses of amoebas in humans. Curr Opin Microbiol. 2016;31:199-208. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
61. Scheid P. A strange endocytobiont revealed as largest virus. Curr Opin Microbiol. 2016;31:58-62. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
62. Costa VA, Mifsud JCO, Gilligan D, Williamson JE, Holmes EC, Geoghegan JL. Metagenomic sequencing reveals a lack of virus exchange between native and invasive freshwater fish across the Murray-Darling Basin, Australia. Virus Evol. 2021;7(1):veab034. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
63. Geoghegan JL, Di Giallonardo F, Wille M, Ortiz-Baez AS, Costa VA, Ghaly T, et al. Virome composition in marine fish revealed by meta-transcriptomics. Virus Evol. 2021;7(1):veab035. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]
64. Geoghegan JL, Giallonardo F Di, Wille M, Ortiz-Baez AS, Costa VA, Ghaly T, et al. Host evolutionary history and ecology shape virome composition in fishes. bioRxiv. [Preprint] [
View at Publisher] [
DOI] [
Google Scholar]
65. Dennehy JJ. Evolutionary ecology of virus emergence. Ann N Y Acad Sci. 2017;1389(1):124-46. [
View at Publisher] [
DOI] [
PMID] [
Google Scholar]