1. Zhang YZ, Shi M, Holmes EC. Using Metagenomics to Characterize an Expanding Virosphere. Cell. 2018; 172(6):1168-72. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
2. Aevarsson A, Kaczorowska AK, Adalsteinsson BT, Ahlqvist J, Al-Karadaghi S, Altenbuchner J, et al. Going to extremes - a metagenomic journey into the dark matter of life. FEMS Microbiol Lett. 2021; 368(12). [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
3. Yin H, Dong Z, Wang X, Lu S, Xia F, Abuduwaili A, et al. Metagenomic Analysis of Marigold: Mixed Infection Including Two New Viruses. Viruses. 2021; 13(7):1254. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
4. Lappe RR, Elmore MG, Lozier ZR, Jander G, Miller WA, Whitham SA. Metagenomic identification of novel viruses of maize and teosinte in North America. BMC Genomics. 2022; 23(1):1-15. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
5. Damian D, Maghembe R, Damas M, Wensman JJ, Berg M. Application of viral metagenomics for study of emerging and reemerging tick-borne viruses. Vector Borne Zoonotic Dis. 2020; 20(8):557-65. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
6. Souza JVC, Santos H de O, Leite AB, Giovanetti M, Bezerra R dos S, Carvalho E de, et al. Viral Metagenomics for the Identification of Emerging Infections in Clinical Samples with Inconclusive Dengue, Zika, and Chikungunya Viral Amplification. Viruses. 2022; 14(9):1933. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
7. Mohsin H, Asif A, Fatima M, Rehman Y. Potential role of viral metagenomics as a surveillance tool for the early detection of emerging novel pathogens. Arch Microbiol. 2021; 203(3):865-72. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
8. Slavov SN. Viral Metagenomics for Identification of Emerging Viruses in Transfusion Medicine. Viruses. 2022; 14(11):2448. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
9. Erratum: Correction to "The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update". Nucleic Acids Res. 2022; 50(15):w345-w3551. [
View at Publisher] [
DOI] [
Google Scholar]
10. Antipov D, Korobeynikov A, McLean JS, Pevzner PA. HYBRIDSPADES: an algorithm for hybrid assembly of short and long reads. Bioinformatics. 2016; 32(7):1009-15. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
11. Prjibelski AD, Vasilinetc I, Bankevich A, Gurevich A, Krivosheeva T, Nurk S, et al. ExSPAnder: a universal repeat resolver for DNA fragment assembly. Bioinformatics. 2014; 30(12):i293-301. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
12. Vasilinetc I, Prjibelski AD, Gurevich A, Korobeynikov A, Pevzner PA. Assembling short reads from jumping libraries with large insert sizes. Bioinformatics. 2015; 31(20):3262-8. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
13. Sukhorukov G, Khalili M, Gascuel O, Candresse T, Marais-Colombel A, Nikolski M. VirHunter: A Deep Learning-Based Method for Detection of Novel RNA Viruses in Plant Sequencing Data. Front Bioinform. 2022;2:38. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
14. Wood DE, Salzberg SL. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):1-2. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
15. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30(15):2114-20. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
16. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4):357-9. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
17. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10(3):1-10. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
18. Meleshko D, Hajirasouliha I, Korobeynikov A. coronaSPAdes: from biosynthetic gene clusters to RNA viral assemblies. Bioinformatics. 2021;38(1):1-8. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
19. Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck FJ, et al. RaGOO: Fast and accurate reference-guided scaffolding of draft genomes. Genome Biol. 2019; 20(1):1-7. [
View at Publisher] [
DOI] [
Google Scholar] [
ISI]
20. Maan H, Mbareche H, Raphenya AR, Banerjee A, Nasir JA, Kozak RA, et al. Genotyping SARS-CoV-2 through an interactive web application. Lancet Digit Heal. 2020; 2(7):e340-1. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
21. O'Toole Á, Hill V, Pybus OG, Watts A, Bogoch II, Khan K, et al. Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2 with grinch. Wellcome Open Res. 2021; 6:121. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
22. O'Toole Á, Scher E, Underwood A, Jackson B, Hill V, McCrone JT, et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol. 2021; 7(2):veab064. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
23. Rambaut A, Holmes E, O'Toole Á, VH-N, 2020 undefined. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020;5(11):1403-7. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
24. Aksamentov I, Roemer C, Hodcroft EB, Neher RA. Nextclade: clade assignment, mutation calling and quality control for viral genomes. JOSS. 2021;6(67):3773. [
View at Publisher] [
DOI] [
Google Scholar]
25. Yan F, Li E, Wang T, Li Y, Liu J, Wang W, et al. Characterization of Two Heterogeneous Lethal Mouse-Adapted SARS-CoV-2 Variants Recapitulating Representative Aspects of Human COVID-19. Front Immunol. 2022; 13: 821664. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
26. Shannon A, Fattorini V, Sama B, Selisko B, Feracci M, Falcou C, et al. A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase. Nat Commun. 2022; 13(1):621. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
27. Watanabe C, Okiyama Y, Tanaka S, Fukuzawa K, Honma T. Molecular recognition of SARS-CoV-2 spike glycoprotein: quantum chemical hot spot and epitope analyses. Chem Sci. 2021; 12(13):4722-39. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
28. Mou K, Abdalla M, Wei DQ, Khan MT, Lodhi MS, Darwish DB, et al. Emerging mutations in envelope protein of SARS-CoV-2 and their effect on thermodynamic properties. Inform Med Unlocked. 2021; 25:100675. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
29. Bamford CGG, Broadbent L, Aranday-Cortes E, McCabe M, McKenna J, Courtney DG, et al. Comparison of SARS-CoV-2 Evolution in Paediatric Primary Airway Epithelial Cell Cultures Compared with Vero-Derived Cell Lines. Viruses. 2022; 14(2):325. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
30. Dieterle ME, Haslwanter D, Bortz RH, Wirchnianski AS, Lasso G, Vergnolle O, et al. A Replication-Competent Vesicular Stomatitis Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition. Cell Host Microbe. 2020; 28(3):486-496.e6. [
View at Publisher] [
DOI] [
PubMed] [
Google Scholar]
31. Carrazco-Montalvo A, Herrera-Yela A, Alarcón-Vallejo D, Gutiérrez-Pallo D, Armendáriz-Castillo I, Andrade-Molina D, et al. Omicron sublineages current status in Ecuador. Preprints [V1]. 2022. [
View at Publisher] [
DOI] [
Google Scholar]