Volume 4, Issue 1 ( Journal of Clinical and Basic Research (JCBR) 2020)                   jcbr 2020, 4(1): 21-31 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saghaeian Jazi M. A Mini-Review of Nanotechnology and Prostate Cancer: Approaches in Early Diagnosis. jcbr 2020; 4 (1) :21-31
URL: http://jcbr.goums.ac.ir/article-1-243-en.html
Golestan University of Medical Sciences , marie.saghaeian@goums.ac.ir
Abstract:   (2571 Views)

 The most important aspect of cancer treatment is early diagnosis. The best serum marker currently available for diagnosis of prostate cancer (CaP) is serum prostate-specific antigen (PSA). However, PSA test does not have high specificity and is not reliable for differentiating benign prostate hyperplasia, non-aggressive CaP and aggressive CaP. In the past decade, great efforts have been made in the development of novel biosensor-based strategies for detection of biomolecules and miniaturization assays for PSA. The emerging nanotechnology in recent years is expected to have a profound effect on healthcare and scientific research in the near future. Specifically, nanotechnology is foreseen to help solve one of the most challenging and longstanding problems of early cancer detection. The current mini-review summarizes the current knowledge and application of nanoarrays, nanosensors, liposomes, improved nanoparticles (dendrimers, diamondoids, gold-based nanoparticles, magnetic nanoparticles and quantum dots) and nanoelectronics in early diagnosis of prostate cancer. This mini-review highlights the most recent advances and innovative solutions in applications of nanotechnology for the detection of CaP biomarkers and early diagnosis of CaP.

Full-Text [PDF 507 kb]   (1117 Downloads)    
Article Type: Review | Subject: Basic medical sciences
Received: 2020/03/14 | Accepted: 2020/04/23 | Published: 2020/05/15

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018;68(6):394-424. [DOI]
2. Healy DA, Hayes CJ, Leonard P, McKenna L, O'Kennedy R. Biosensor developments: application to prostate-specific antigen detection. TRENDS in Biotechnology. 2007;25(3):125-31. [DOI] [Google Scholar]
3. Mansoori GA, Mohazzabi P, McCormack P, Jabbari S. Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead. World Review of Science, Technology and Sustainable Development. 2007;4(2-3):226-57. [DOI] [Google Scholar]
4. Wang AZ, Gu FX, Farokhzad OC. Nanoparticles for cancer diagnosis and therapy. Safety of Nanoparticles: Springer; 2009. p. 209-35. [DOI] [Google Scholar]
5. Jain K. Proteomics-based anticancer drug discovery and development. Technology in cancer research & treatment. 2002;1(4):231-6. [DOI] [Google Scholar]
6. Makarov DV, Loeb S, Getzenberg RH, Partin AW.Biom arkers for prostate cancer. Annual review of medicine. 2009;60:139-51. [DOI] [Google Scholar]
7. Partin AW, Marks LS. Prostate-specific antigen and new serum biomarkers for evaluation of chemopreventive agents. Urology. 2001;57(4):132-6. [DOI] [Google Scholar]
8. Schalken J. New developments in the pathobiology of prostate disease. european urology supplements. 2006;5(12):729-36. [DOI] [Google Scholar]
9. You J, Cozzi P, Walsh B, Willcox M, Kearsley J, Russell P, et al. Innovative biomarkers for prostate cancer early diagnosis and progression. Critical reviews in oncology/hematology. 2010;73(1):10-22. [DOI] [Google Scholar]
10. Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, et al. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. Journal of the American Chemical Society. 2006;128(34):11199-205. [DOI] [Google Scholar]
11. Yuhi T, Nagatani N, Endo T, Kerman K, Takata M, Konaka H, et al. Gold nanoparticle based immunochromatography using a resin modified micropipette tip for rapid and simple detection of human chorionic gonadotropin hormone and prostate-specific antigen. Science and Technology of Advanced Materials. 2006;7(3):276-81. [DOI] [Google Scholar]
12. Sardana G, Diamandis EP. The kallikrein family of proteins as urinary biomarkers for the detection of prostate cancer. Clinical biochemistry. 2009;42(13):1483-6. [DOI] [Google Scholar]
13. Garbis SD, Tyritzis SI, Roumeliotis T, Zerefos P, Giannopoulou EG, Vlahou A, et al. Search for potential markers for prostate cancer diagnosis, prognosis and treatment in clinical tissue specimens using amine-specific isobaric tagging (iTRAQ) with two-dimensional liquid chromatography and tandem mass spectrometry. The Journal of Proteome Research. 2008;7(8):3146-58. [DOI] [Google Scholar]
14. Zhou J, Huang L, Wang W, Pang J, Zou Y, Shuai X, et al. Prostate cancer targeted MRI nanoprobe based on superparamagnetic iron oxide and copolymer of poly (ethylene glycol) and polyethyleneimin. Chinese Science Bulletin. 2009;54(18):3137-46. [DOI] [Google Scholar]
15. Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L, et al. Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem. 2008;3(9):1311-5. [DOI] [Google Scholar]
16. Azzazy HM, Mansour MM, Kazmierczak SC. From diagnostics to therapy: prospects of quantum dots. Clinical biochemistry. 2007;40(13):917-27. [DOI] [Google Scholar]
17. Dong W, Guo L, Wang M, Xu S. CdTe QDs-based prostate-specific antigen probe for human prostate cancer cell imaging. Journal of Luminescence. 2009;129(9):926-30. [DOI] [Google Scholar]
18. Gao X, Xing Y, Chung LW, Nie S. Quantum Dot Nanotechnology for Prostate Cancer Research. Prostate Cancer: Springer; 2007. p. 231-44. [DOI] [Google Scholar]
19. Smith AM, Duan H, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Advanced drug delivery reviews. 2008;60(11):1226-40. [DOI] [Google Scholar]
20. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano letters. 2007;7(10):3065-70. [DOI] [Google Scholar]
21. Shi C, Zhu Y, Cerwinka WH, Zhau HE, Marshall FF, Simons JW, et al., editors. Quantum dots: emerging applications in urologic oncology. Urologic Oncology: Seminars and Original Investigations; 2008: Elsevier. [DOI] [Google Scholar]
22. Shi C, Zhu Y, Xie Z, Qian W, Hsieh C-L, Nie S, et al. Visualizing human prostate cancer cells in mouse skeleton using bioconjugated near-infrared fluorescent quantum dots. Urology. 2009;74(2):446-51. [DOI] [Google Scholar]
23. Härmä H, Soukka T, Lövgren T. Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clinical chemistry. 2001;47(3):561-8. [DOI] [Google Scholar]
24. Huhtinen P, Soukka T, Lövgren T, Härmä H. Immunoassay of total prostate-specific antigen using europium (III) nanoparticle labels and streptavidin-biotin technology. Journal of immunological methods. 2004;294(1):111-22. [DOI] [Google Scholar]
25. Ye Z, Tan M, Wang G, Yuan J. Preparation, characterization and application of fluorescent terbium complex-doped zirconia nanoparticles. Journal of fluorescence. 2005;15(4):499-505. [DOI] [Google Scholar]
26. Hudson SD, Chumanov G. Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy). Analytical and bioanalytical chemistry. 2009;394(3):679-86. [DOI] [Google Scholar]
27. Yoon K-J, Seo H-K, Hwang H, Pyo D-J, Eom I-Y, Hahn J-H, et al. Bioanalytical application of SERS immunoassay for detection of prostate-specific antigen. Bulletin of the Korean Chemical Society. 2010;31(5):1215-8. [DOI] [Google Scholar]
28. Park H-Y, Driskell JD, Kwarta KM, Lipert RJ, Porter MD, Schoen C, et al. Ultrasensitive immunoassays based on surface-enhanced Raman scattering by immunogold labels. Surface-Enhanced Raman Scattering: Springer; 2006. p. 427-46. [DOI] [Google Scholar]
29. Grubisha DS, Lipert RJ, Park H-Y, Driskell J, Porter MD. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Analytical chemistry. 2003;75(21):5936-43. [DOI] [Google Scholar]
30. Schlücker S, Küstner B, Punge A, Bonfig R, Marx A, Ströbel P. Immuno‐Raman microspectroscopy: In situ detection of antigens in tissue specimens by surface‐enhanced Raman scattering. Journal of Raman Spectroscopy. 2006;37(7):719-21. [DOI] [Google Scholar]
31. Sun C, Su K-H, Valentine J, Rosa-Bauza YT, Ellman JA, Elboudwarej O, et al. Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors. ACS nano. 2010;4(2):978-84. [DOI] [Google Scholar]
32. Shubayev VI, Pisanic TR, Jin S. Magnetic nanoparticles for theragnostics. Advanced drug delivery reviews. 2009;61(6):467-77. [DOI] [Google Scholar]
33. Kim KY. Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomedicine: Nanotechnology, Biology and Medicine. 2007;3(2):103-10. [DOI] [Google Scholar]
34. Chanda N, Kan P, Watkinson LD, Shukla R, Zambre A, Carmack TL, et al. Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198 AuNP nanoconstruct in prostate tumor-bearing mice. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6(2):201-9. [DOI] [Google Scholar]
35. Roa W, Zhang X, Guo L, Shaw A, Hu X, Xiong Y, et al. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology. 2009;20(37):375101. [DOI] [Google Scholar]
36. Chen H, Jiang C, Yu C, Zhang S, Liu B, Kong J. Protein chips and nanomaterials for application in tumor marker immunoassays. Biosensors and Bioelectronics. 2009;24(12):3399-411. [DOI] [Google Scholar]
37. Lee Y, Lee SH, Kim JS, Maruyama A, Chen X, Park TG. Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. Journal of controlled release. 2011;155(1):3-10. [DOI] [Google Scholar]
38. Thaxton CS, Elghanian R, Thomas AD, Stoeva SI, Lee J-S, Smith ND, et al. Nanoparticle-based bio-barcode assay redefines "undetectable" PSA and biochemical recurrence after radical prostatectomy. Proceedings of the National Academy of Sciences. 2009;106(44):18437-42. [DOI] [Google Scholar]
39. Xia N, Deng D, Wang Y, Fang C, Li S-J. Gold nanoparticle-based colorimetric method for the detection of prostate-specific antigen. International journal of nanomedicine. 2018;13:2521-30. PubMed PMID: 29731627. eng. [DOI] [Google Scholar]
40. Fortina P, Wang J, Surrey S, Park JY, Kricka LJ. Beyond Microtechnology-Nanotechnology in Molecular Diagnosis. Integrated Biochips for DNA Analysis: Springer; 2007. p. 187-97. [DOI] [Google Scholar]
41. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature biotechnology. 2005;23(10):1294-301. [DOI] [Google Scholar]
42. Maehashi K, Matsumoto K. Label-free electrical detection using carbon nanotube-based biosensors. Sensors. 2009;9(7):5368-78. [DOI] [Google Scholar]
43. Okuno J, Maehashi K, Kerman K, Takamura Y, Matsumoto K, Tamiya E. Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosensors and Bioelectronics. 2007;22(9):2377-81. [DOI] [Google Scholar]
44. Quintero-Jaime AF, Berenguer-Murcia Á, Cazorla-Amorós D, Morallón E. Carbon Nanotubes Modified With Au for Electrochemical Detection of Prostate Specific Antigen: Effect of Au Nanoparticle Size Distribution. Frontiers in Chemistry. 2019 2019-March-27;7(147). English. [DOI] [Google Scholar]
45. Kang B, Wang H, Lele T, Tseng Y, Ren F, Pearton S, et al. Prostate specific antigen detection using AlGaN/GaN high electron mobility transistors. Applied physics letters. 2007;91(11):112106-. [DOI] [Google Scholar]
46. Ahn J-H, Im M, Choi Y-K, editors. Label-free electrical detection of PSA by a nanogap field effect transistor. Proc Micro Total Analysis Systems; 2008. [Google Scholar]
47. Kim J, Junkin M, Kim D-H, Kwon S, Shin YS, Wong PK, et al. Applications, techniques, and microfluidic interfacing for nanoscale biosensing. Microfluidics and Nanofluidics. 2009;7(2):149-67. [DOI] [Google Scholar]
48. Su L-C, Chen R-C, Li Y-C, Chang Y-F, Lee Y-J, Lee C-C, et al. Detection of prostate-specific antigen with a paired surface plasma wave biosensor. Analytical chemistry. 2010;82(9):3714-8. [DOI] [Google Scholar]
49. Hong Y, Huh Y-M, Yoon DS, Yang J. Nanobiosensors based on localized surface plasmon resonance for biomarker detection. Journal of Nanomaterials. 2012;2012:111. [DOI] [Google Scholar]
50. Hwang WS, Sim SJ. A strategy for the ultrasensitive detection of cancer biomarkers based on the LSPR response of a single AuNP. Journal of nanoscience and nanotechnology. 2011;11(7):5651-6. [DOI] [Google Scholar]
51. Unser S, Bruzas I, He J, Sagle L. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors. 2015;15(7):15684-716. [DOI] [Google Scholar]
52. Choi J-W, Oh B-K, Jang Y-H, Kang D-Y. Ultrasensitive immunoassay for prostate specific antigen using scanning tunneling microscopy-based electrical detection. Applied Physics Letters. 2008;93(3):033110. [DOI] [Google Scholar]
53. Klein KM, Zheng J, Sitaraman S, Gewirtz A, Sarma D, Rajalakshmi S, editors. Array of Nano-Cantilevers as a Bio-Assay for Cancer Diagnosis. Electronic Components and Technology Conference; 2005: IEEE; 1999. [Google Scholar]
54. Vashist SK. A review of microcantilevers for sensing applications. J of Nanotechnology. 2007;3:1-18. [Google Scholar]
55. Hwang KS, Lee JH, Park J, Yoon DS, Park JH, Kim TS. In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever. Lab on a Chip. 2004;4(6):547-52. [DOI] [Google Scholar]
56. Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature biotechnology. 2001;19(9):856-60. [DOI] [Google Scholar]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Clinical and Basic Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).