Volume 3, Issue 4 ( Journal of Clinical and Basic Research (JCBR) 2019)                   jcbr 2019, 3(4): 13-22 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roohallah F, Nikyar A, Milani A. The Roles and Diagnostic Potential of Long Non-Coding RNAs in Some Cancers: A Review. jcbr. 2019; 3 (4) :13-22
URL: http://jcbr.goums.ac.ir/article-1-231-en.html
1- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Abstract:   (610 Views)
Since their discovery, non-coding RNAs have been known as key regulators of gene expression. Gaining a better understanding about their biogenesis and function may provide valuable knowledge about the heterogeneity of malignancies and contribute to identification of diagnostic, prognostic and therapeutic targets. Long non-coding RNAs (lncRNAs) are a group of RNAs composed of >200 nucleotides that play important regulatory roles in gene transcription, splicing and epigenetics as well as in biological processes involved in cell cycle, development and pluripotency. Generally, the expression levels of lncRNAs are lower than protein-coding genes, but they exhibit more tissue-specific expression patterns. Recent studies have suggested involvement of cancer-specific lncRNAs including HOTAIR, ANRIL, FENDRR, GAS5 and H19 in tumorigenesis, tumor cell proliferation, invasion, migration, apoptosis and angiogenesis. Expression of lncRNAs is tissue-specific and may vary depending on the stage of tumor progression. In this review, we summarize current knowledge on the roles of lncRNAs in some cancers and their potential as diagnostic and prognostic targets.
Keywords: Cancer, lncRNA, Biomarkers
Full-Text [PDF 212 kb]   (130 Downloads)    
Article Type: Review | Subject: Medicine
Received: 2019/12/19 | Accepted: 2019/12/19 | Published: 2019/12/19

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018 Nov;68(6):394-424. [View at Publisher] [DOI]
2. Sahu A, Singhal U, Chinnaiyan AM. Long noncoding RNAs in cancer: from function to translation. Trends in cancer. 2015 Oct 1;1(2):93-109. [View at Publisher] [DOI] [Google Scholar]
3. Fatima R, Akhade VS, Pal D, Rao SM. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. Molecular and cellular therapies. 2015 Dec;3(1):5. [View at Publisher] [DOI] [Google Scholar]
4. Yarmishyn AA, Kurochkin IV. Long noncoding RNAs: a potential novel class of cancer biomarkers. Frontiers in genetics. 2015 Apr 23;6:145. [View at Publisher] [DOI] [Google Scholar]
5. Shi T, Gao G, Cao Y. Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Disease markers. 2016;2016. [View at Publisher] [DOI] [Google Scholar]
6. Tano K, Akimitsu N. Long non-coding RNAs in cancer progression. Frontiers in genetics. 2012 Oct 24;3:219. [View at Publisher] [DOI] [Google Scholar]
7. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. . 2015 Mar 1;136(5):E359-86. [DOI] [Google Scholar]
8. Malik R, Patel L, Prensner JR, Shi Y, Iyer MK, Subramaniyan S, Carley A, Niknafs YS, Sahu A, Han S, Ma T. The lncRNA PCAT29 inhibits oncogenic phenotypes in prostate cancer. Molecular Cancer Research. 2014 Aug 1;12(8):1081-7. [DOI] [Google Scholar]
9. Chakravarty D, Sboner A, Nair SS, Giannopoulou E, Li R, Hennig S, Mosquera JM, Pauwels J, Park K, Kossai M, MacDonald TY. The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nature communications. 2014 Nov 21;5:5383. [Google Scholar]
10. Sattarifard H, Hashemi M, Hassanzarei S, Narouie B, Bahari G. Association between genetic polymorphisms of long non coding RNA PRNCR1 and prostate cancer risk in a sample of the Iranian population. Molecular and clinical oncology. 2017 Dec 1;7(6):1152-8. [DOI] [Google Scholar]
11. Salinas CA, Kwon E, Carlson CS, Koopmeiners JS, Feng Z, Karyadi DM, Ostrander EA, Stanford JL. Multiple independent genetic variants in the 8q24 region are associated with prostate cancer risk. Cancer Epidemiology and Prevention Biomarkers. 2008 May 1;17(5):1203-13. [DOI] [Google Scholar]
12. Li L, Jia F, Bai P, Liang Y, Sun R, Yuan F, Zhang L, Gao L. Association between polymorphisms in long non-coding RNA PRNCR1 in 8q24 and risk of gastric cancer. Tumor Biology. 2016 Jan 1;37(1):299-303. [DOI] [Google Scholar]
13. Li L, Sun R, Liang Y, Pan X, Li Z, Bai P, Zeng X, Zhang D, Zhang L, Gao L. Association between polymorphisms in long non-coding RNA PRNCR1 in 8q24 and risk of colorectal cancer. Journal of Experimental & Clinical Cancer Research. 2013 Dec;32(1):104. [DOI] [Google Scholar]
14. Zhang A, Zhao JC, Kim J, Fong KW, Yang YA, Chakravarti D, Mo YY, Yu J. LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell reports. 2015 Oct 6;13(1):209-21. [DOI:10.1016/j.celrep.2015.08.069] [Google Scholar]
15. Xue Y, Wang M, Kang M, Wang Q, Wu B, Chu H, Zhong D, Qin C, Yin C, Zhang Z, Wu D. Association between lncrna PCGEM1 polymorphisms and prostate cancer risk. Prostate cancer and prostatic diseases. 2013 Jun;16(2):139. [DOI]
16. Srikantan V, Zou Z, Petrovics G, Xu L, Augustus M, Davis L, Livezey JR, Connell T, Sesterhenn IA, Yoshino K, Buzard GS. PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proceedings of the National Academy of Sciences. 2000 Oct 24;97(22):12216-21. [DOI]
17. Petrovics G, Zhang W, Makarem M, Street JP, Connelly R, Sun L, Sesterhenn IA, Srikantan V, Moul JW, Srivastava S. Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene. 2004 Jan;23(2):605. [DOI]
18. 18 Zhang R, Xia LQ, Lu WW, Zhang J, Zhu JS. LncRNAs and cancer. Oncology letters. 2016 Aug 1;12(2):1233-9. [DOI]
19. Xu TP, Xia R, Liu XX, Sun M, Yin L, Chen WM, Han L, Zhang EB, Kong R, De W, Shu YQ. Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. Journal of hematology & oncology. 2014 Dec;7(1):63. [DOI]
20. Xu MD, Wang Y, Weng W, Wei P, Qi P, Zhang Q, Tan C, Ni SJ, Dong L, Yang Y, Lin W. A positive feedback loop of lncRNA-PVT1 and FOXM1 facilitates gastric cancer growth and invasion. Clinical Cancer Research. 2017 Apr 15;23(8):2071-80. [DOI]
21. Ding J, Li D, Gong M, Wang J, Huang X, Wu T, Wang C. Expression and clinical significance of the long non-coding RNA PVT1 in human gastric cancer. OncoTargets and therapy. 2014;7:1625. [DOI]
22. Sun M, Nie F, Wang Y, Zhang Z, Hou J, He D, Xie M, Xu L, De W, Wang Z, Wang J. LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Cancer research. 2016 Nov 1;76(21):6299-310. [DOI]
23. Hu Y, Wang J, Qian J, Kong X, Tang J, Wang Y, Chen H, Hong J, Zou W, Chen Y, Xu J. Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer research. 2014 Dec 1;74(23):6890-902. [DOI]
24. Sun TT, He J, Liang Q, Ren LL, Yan TT, Yu TC, Tang JY, Bao YJ, Hu Y, Lin Y, Sun D. LncRNA GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer discovery. 2016 Jul 1;6(7):784-801. [DOI] [Google Scholar]
25. Papadopoulos V, Tsapakidis K, Del Galdo NA, Papandreou CN, Del Galdo F, Anthoney A, Sakellaridis N, Dimas K, Kamposioras K. The prognostic significance of the hedgehog signaling pathway in colorectal cancer. Clinical colorectal cancer. 2016 Jun 1;15(2):116-27. [DOI] [Google Scholar]
26. Yang Y, Shen Z, Yan Y, Wang B, Zhang J, Shen C, Li T, Ye C, Gao Z, Peng G, Ye Y. Long non coding RNA GAS5 inhibits cell proliferation, induces G0/G1 arrest and apoptosis, and functions as a prognostic marker in colorectal cancer. Oncology letters. 2017 May 1;13(5):3151-8. [DOI] [Google Scholar]
27. Zheng Y, Song D, Xiao K, Yang C, Ding Y, Deng W, Tong S. LncRNA GAS5 contributes to lymphatic metastasis in colorectal cancer. Oncotarget. 2016 Dec 13;7(50):83727. [DOI] [Google Scholar]
28. Liu Y, Zhang M, Liang L, Li J, Chen YX. Over-expression of lncRNA DANCR is associated with advanced tumor progression and poor prognosis in patients with colorectal cancer. International journal of clinical and experimental pathology. 2015;8(9):11480. [Google Scholar]
29. Li J, Lian Y, Yan C, Cai Z, Ding J, Ma Z, Peng P, Wang K. Long non‐coding RNA FOXP 4‐AS 1 is an unfavourable prognostic factor and regulates proliferation and apoptosis in colorectal cancer. Cell proliferation. 2017 Feb;50(1):e12312. [DOI] [Google Scholar]
30. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014 Jan;505(7483):344. [DOI] [Google Scholar]
31. Huang G, Wu X, Li S, Xu X, Zhu H, Chen X. The long noncoding RNA CASC2 functions as a competing endogenous RNA by sponging miR-18a in colorectal cancer. Scientific reports. 2016 May 20;6:26524. [DOI]
32. Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z, Zhang S, Wang HB, Ge J, Lu X, Yang L. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell research. 2014 May;24(5):513. [DOI] [Google Scholar]
33. Alipoor FJ, Asadi MH, Torkzadeh‐Mahani M. MIAT lncRNA is overexpressed in breast cancer and its inhibition triggers senescence and G1 arrest in MCF7 cell line. Journal of cellular biochemistry. 2018 Aug;119(8):6470-81. [DOI] [Google Scholar]
34. Sun H, Wang G, Peng Y, Zeng Y, Zhu QN, Li TL, Cai JQ, Zhou HH, Zhu YS. H19 lncRNA mediates 17β-estradiol-induced cell proliferation in MCF-7 breast cancer cells. Oncology reports. 2015 Jun 1;33(6):3045-52. [DOI] [Google Scholar]
35. Zhang M, Wu WB, Wang ZW, Wang XH. lncRNA NEAT1 is closely related with progression of breast cancer via promoting proliferation and EMT. Eur Rev Med Pharmacol Sci. 2017 Mar 1;21(5):1020-6. [Google Scholar]
36. Tuo YL, Li XM, Luo J. Long noncoding RNA UCA1 modulates breast cancer cell growth and apoptosis through decreasing tumor suppressive miR-143. Eur Rev Med Pharmacol Sci. 2015 Sep 1;19(18):3403-11. [Google Scholar]
37. Xu ST, Xu JH, Zheng ZR, Zhao QQ, Zeng XS, Cheng SX, Liang YH, Hu QF. Long non-coding RNA ANRIL promotes carcinogenesis via sponging miR-199a in triple-negative breast cancer. Biomedicine & Pharmacotherapy. 2017 Dec 1;96:14-21. [DOI] [Google Scholar]
38. Congrains A, Kamide K, Ohishi M, Rakugi H. ANRIL: molecular mechanisms and implications in human health. International journal of molecular sciences. 2013 Jan 10;14(1):1278-92. [DOI] [Google Scholar]
39. Cai Y, He J, Zhang D. Long noncoding RNA CCAT2 promotes breast tumor growth by regulating the Wnt signaling pathway. OncoTargets and therapy. 2015;8:2657. [DOI] [Google Scholar]
40. Barsotti AM, Beckerman R, Laptenko O, Huppi K, Caplen NJ, Prives C. p53-Dependent induction of PVT1 and miR-1204. Journal of Biological Chemistry. 2012 Jan 20;287(4):2509-19. [DOI] [Google Scholar]
41. Monnier P, Martinet C, Pontis J, Stancheva I, Ait-Si-Ali S, Dandolo L. H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proceedings of the National Academy of Sciences. 2013 Dec 17;110(51):20693-8. [DOI] [Google Scholar]
42. Huang J, Zhou N, Watabe K, Lu Z, Wu F, Xu M, Mo YY. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell death & disease. 2014 Jan;5(1):e1008. [DOI] [Google Scholar]
43. Redis RS, Sieuwerts AM, Look MP, Tudoran O, Ivan C, Spizzo R, Zhang X, de Weerd V, Shimizu M, Ling H, Buiga R. CCAT2, a novel long non-coding RNA in breast cancer: expression study and clinical correlations. Oncotarget. 2013 Oct;4(10):1748. [DOI] [Google Scholar]

Add your comments about this article : Your username or Email:

© 2020 All Rights Reserved | Journal of Clinical and Basic Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.