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Introduction 

Coronary artery bypass graft (CABG) surgery utilizing 

cardiopulmonary bypass (CPB) is a recognized instigator of 

inflammatory responses. Several factors inherent to cardiac surgery, 

including valvular repair procedures, anesthetic agents, cardioplegic 

arrest, myocardial ischemia followed by reperfusion, surgical trauma, 

and the extracorporeal circulation provided by the heart-lung machine, 

have been implicated in the elicitation of these reactions (1). Notably, 

the surgical context may also lead to the release of non-pathogen-

derived endogenous danger signals, which can subsequently activate the 

innate immune system (2,3). 

Furthermore, the myocardium itself acts as a source of reactive 

oxygen species (ROS) and inflammatory mediators, which likely 

contribute to the deterioration of cardiac pump function. Consequently, 

these inflammatory responses should be carefully considered to mitigate 

the incidence of postoperative complications (4). Negative outcomes 

following CPB surgery and the presence of organ dysfunction exhibit a 

strong correlation with the equilibrium between the gene expression of 

pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNF-

α), and anti-inflammatory cytokines, such as interleukin-10 (IL-10). 

Interleukin-18 (IL-18) stands out among various clinical and cytokine 

assessments as a pivotal cytokine governing this equilibrium, exhibiting 

notable predictive capacity for organ dysfunction and adverse prognoses 

subsequent to CPB. This highlights the significant role of IL-18 in 

cardiovascular pathologies and during cardiac surgical procedures. 

Initially identified as a factor that stimulates the production of 

interferon-gamma (IFN-γ) by inducing Type 1 helper (Th1) T cells, 

leading to IFN-γ release (5), IL-18 is classified within the interleukin-1 

(IL-1) family and functions as a pro-inflammatory cytokine (6). The 

synergistic interaction between IL-18 and interleukin-12 (IL-12) 

stimulates the release of IFN-γ from lymphocytes. Elevated serum levels 

of IL-18 correlate with a reduction in the production of the anti-

inflammatory cytokine IL-10 and a concomitant increase in the pro-

inflammatory cytokine TNF-α. Following CPB surgery, a rise in serum 

IL-18 concentrations has been observed (7,8). Increased IL-18 activity 

may serve as a predictive biomarker for several adverse cardiac events, 
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including inflammation and injury, hypertrophy, dysfunction, and 

extracellular matrix (ECM) remodeling (9,10).  

It is further posited that IL-18 triggers lymphocyte-mediated 

cytotoxicity in endothelial cells. This process is hypothesized to 

contribute to the disruption of the glycocalyx and induce adverse effects 

during or immediately following CABG surgery (11). Prior research has 

demonstrated that IL-18, upon cleavage by nucleotide-binding domain, 

leucine-rich repeat-containing family, pyrin domain-containing 3 

(NLRP3), exacerbates ischemia/reperfusion-induced cardiac injury and 

inflammation. This exacerbation occurs through the activation of the 

signal transducer and activator of transcription 3 (STAT3)/forkhead box 

protein O3 (FOXO3)/C-X-C chemokine ligand 16 (CXCL16) pathway 

(12). 

Dex, a non-opioid anesthetic agent that selectively activates alpha2 

(𝛼2) adrenergic receptors, has been extensively employed in cardiac 

surgery (1). Furthermore, beyond its anesthetic properties, Dex exerts 

beneficial effects in mitigating inflammation and myocardial damage 

during cardiac surgical procedures. These protective roles are attributed 

to its anti-inflammatory, anti-apoptotic, antioxidant, and anti-stress 

mechanisms, as well as its capacity to activate the innate immune system 

(13-17). Prior research has demonstrated the potent anti-inflammatory 

properties of Dex in individuals undergoing cardiac surgery or 

experiencing cardiovascular pathologies. These anti-inflammatory 

effects of Dex are mediated through diverse signaling pathways, notably 

by suppressing the production of pro-inflammatory cytokines, such as 

TNF-α, IL-8, IL-1, interleukin-6 (IL-6), INF-γ, and NF-κB. 

Simultaneously, Dex facilitates the activation of anti-inflammatory 

markers, including IL-10, NK-T cells, and a shift towards a type 1 T 

helper (Th1): type 2 helper (Th2) T cell, … cell balance, thereby 

contributing to the preservation of patients' immunity (13-17). 

Additionally, in an in vitro model of cardiac fibroblast 

hypoxia/reoxygenation, Dex inhibited the activation of the NLRP3 

inflammasome. The study's findings indicated that Dex significantly 

downregulated the expression of several pro-inflammatory cytokines 

and apoptosis-related proteins, including interleukin-1β (IL-1β), IL-18, 

TNF-α, NLRP3, caspase-1, cleaved caspase-1, and apoptosis-associated 

speck-like protein containing a caspase recruitment domain (ASC). 

Consequently, Dex treatment mitigated cellular inflammation and 

apoptosis, alongside improvements in hemodynamic parameters (18).  

Consequently, this review was undertaken to specifically examine 

the role of Dex and its interplay with the IL-18 signaling pathway in 

modulating the immune response following open-heart surgery. 

 

Methods 

A systematic literature review was conducted across several major 

databases, including PubMed, Scopus, Elsevier, and Google Scholar, 

from January 2015 to December 2025. The search strategy focused on 

preclinical studies (Both in vivo and in vitro), clinical trials, systematic 

reviews, meta-analyses, and literature reviews pertaining to the anti-

inflammatory effects of Dex in the context of cardiac surgery and its 

potential relationship with the IL-18 signaling pathway within the 

immune system. The following keywords were employed in the English 

language search: “Dexmedetomidine,” “alpha2 adrenergic receptor,” 

“cardiac surgery,” “interleukin-18,” “inflammation,” and 

“sympatholytic.” Articles published in languages other than English 

were excluded if the database search functionalities allowed for such 

restrictions.  

Dexmedetomidine and interlukine-18: Organization and benefits on 

heart diseases 

Previous studies have investigated the roles of Dex and IL-18 in 

cardiovascular diseases. The corresponding mechanisms are presented 

in Figures 1 and 2. The key findings derived from these investigations 

are detailed below. 

Interlukine-18 in heart diseases 

IL-18, a member of the IL-1 cytokine family, functions as a pro-

inflammatory signaling molecule. IL-18, in conjunction with IL-1, plays 

a role in the activation of Th1 cells (5). This pro-inflammatory cytokine 

is produced by a variety of cell types, including macrophages, epithelial 

cells, T cells, neutrophils, NK-T cells, and B cells (Figure 1). Notably, 

IL-18 has been implicated in the pathophysiology of several 

inflammatory conditions, such as ischemia/reperfusion injury, transplant 

rejection, and autoimmune diseases (22). 

 
Figure 1. Interlukine-18 signaling pathways in inflammation (19,20) 
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Recent studies have demonstrated elevated IL-18 levels in cardiac 

tissue subjected to myocardial ischemia/reperfusion and sepsis. 

Specifically, both the non-infarcted and infarcted regions of the left 

ventricular myocardium exhibit a significant upregulation of pro-IL-18 

protein and IL-18 mRNA following an episode of ischemia/reperfusion. 

According to immunohistochemical analysis, a specific IL-18 signal is 

present in the smooth muscle and endothelial cells of the heart. 

Furthermore, the left ventricular ischemic myocardium of patients 

diagnosed with ischemic dilated cardiomyopathy exhibits a notable 

upregulation in both mature IL-18 protein expression and IL-18 

messenger RNA (mRNA) levels. The primary cellular sources of both 

IL-18 and its receptor alpha subunit (IL-18Rα) within the ischemic 

myocardium have been identified as cardiomyocytes, endothelial cells, 

and macrophages. This observation suggests an upregulation of IL-18 

signaling pathways in the context of human heart failure (23).  

Elevated IL-18 activity has been identified as a potential indicator 

of several adverse cardiac events, including inflammation, tissue 

damage, hypertrophy, functional impairment, and ECM remodeling 

(9,10). Furthermore, IL-18, following its cleavage by NLRP3, has been 

shown to activate the STAT3/FOXO3/CXCL-16 signaling pathway, 

thereby accelerating cardiac injury and inflammatory processes induced 

by ischemia/reperfusion (12). A study has indicated that IL-18 primarily 

induces cardiac inflammation through the upregulation of TNF-α, 

vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion 

molecule 1 (ICAM-1), IFN-γ, and IL-1β. Furthermore, IL-18 

contributes to the development of cardiac fibrosis, hypertrophy, 

apoptosis, and contractile dysfunction, alongside a reduction in β-

adrenergic receptor responsiveness (23). The inflammasome-mediated 

activation of IL-18 contributes to pathological cardiac inflammation, 

characterized by macrophage infiltration and myocardial alterations, 

through rapid overstimulation of the β-adrenergic receptor (19). 

Furthermore, it is hypothesized that IL-18-activated lymphocytes induce 

cytotoxicity in endothelial cells, potentially leading to glycocalyx 

disruption and adverse outcomes during or immediately following 

CABG (10). Despite the existence of endogenous inhibitors such as IL-

18-binding protein (IL-18-BP) and interleukin-37 (IL-37), 

pharmacological interventions are often necessary to suppress IL-18 

activity (8). 

The effect of dexmedetomidine on immune system 

Dex, a non-opioid anesthetic agent and a selective α2 adrenergic 

receptor agonist, exerts beneficial effects in mitigating inflammation 

and myocardial injury during cardiac surgery. These protective roles are 

attributed to its anti-inflammatory, anti-apoptotic, antioxidant, and anti-

stress properties, as well as its capacity to activate the innate immune 

system (13-17). The pharmacological mechanism of action of Dex is 

distinct from commonly employed sedative agents, such as clonidine. 

Specifically, Dex functions as a full agonist at α2 adrenergic receptors 

(24). Activation of these receptors within the brain and spinal cord leads 

to the inhibition of neuronal firing, consequently resulting in 

hypotension, bradycardia, sedation, and analgesia (25,26). Therefore, 

Dex is utilized in open-heart surgery to mitigate hemodynamic 

instability and inflammatory responses. This is achieved through its 

direct agonistic effect on vascular α2 receptors and indirectly via 

modulation of sympathetic nerve activity (27). The interplay between 

the immune and adrenergic systems is a close one. Both innate and 

adaptive immune cells express adrenergic receptors, enabling their 

direct responsiveness to the sympathetic nervous system. Postganglionic 

sympathetic nerve fibers, which predominantly release norepinephrine 

as their primary neurotransmitter, innervate both primary and secondary 

lymphoid tissues (28).  

Dex is a highly selective agonist of the α2 adrenergic receptor, 

exhibiting a pronounced affinity for the α2A adrenergic receptor 

subtype. Its immunomodulatory action is primarily mediated through 

the activation of α2 receptors on the presynaptic membrane, which 

subsequently regulates the release of norepinephrine. Furthermore, 

research has indicated that Dex possesses the capacity to modulate 

cellular immunity, attenuate inflammatory responses within tissues, and 

enhance the overall immune function in patients (21). It also manages 

the CD4+/CD8+ ratio and regulates the levels of Th1 by activating T 

lymphocytes and macrophages through interleukin-2 (IL-2) and 

interferon alpha (INF-α). Additionally, it influences Th2 by promoting 

B lymphocytes to produce immunoglobulins through IL-4, IL-6, and IL-

10, and it supports Type 17 helper (Th17) T cells by increasing the need 

for neutrophils at the site of inflammation via interleukin-17 (IL-17A), 

as well as regulatory T cells (Tregs) in adaptive immunity (21,29). The 

diverse functions of Dex are depicted in Figure 2, highlighting its anti-

inflammatory properties. 

 

Conclusion 

In conclusion, Dex exerts immunomodulatory effects by mediating the 

interplay between the α2 adrenergic receptor and the immune system. 

This regulation involves both innate and adaptive immune cells, which 

exhibit direct responsiveness to the sympathetic nervous system. The 

immunomodulation is achieved through the drug's capacity to modulate 

norepinephrine release by activating presynaptic α2 receptors. This 

action subsequently leads to the control of cellular immunity, the 

attenuation of inflammatory responses within tissues, and an 

enhancement of patients' immune function following cardiac surgery. 

 
Figure 2. The effect of dexmedetomidine on inflammatory response (21) 
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The latter is mediated by the downregulation of the IL-18 signaling 

pathways originating from various immune and tissue-resident cells, 

including macrophages, epithelial cells, T cells, neutrophils, NK-T cells, 

and B cells. 
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