Volume 1, Issue 3 (Journal of Clinical and Basic Research(JCBR) 2017)                   jcbr 2017, 1(3): 25-28 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shakerimoghaddam A, Ghaemi E A, jamalli A. Effects Of Zno Nanoparticles on Initial Adhesion and fimH Gene Expression Level of Uropathogenic Eschercia coli. jcbr 2017; 1 (3) :25-28
URL: http://jcbr.goums.ac.ir/article-1-75-en.html
Abstract:   (5125 Views)
Introduction: Uropathogenic Escherichia coli (UPEC) strains are the main causes of urinary tract infections. Adhesion is one of the main and primary steps of UPEC pathogenicity. Type 1 fimbriae is one of the bacterial surface structures that plays an important role in bacterial adhesion. The aim of this study was to evaluate effects of ZnO nanoparticles on the initial adhesion and fimH gene expression level of UPEC. Materials and Method: Four UPEC isolates were used in this study. All isolates were exposed to sub-minimum inhibitory concentration of ZnO nanoparticles (1250 μg/ml). Expression of the fimH gene was evaluated by Real-time PCR. Result: According to the results, presence of nanoparticles reduced the fimH expression level in all four isolates. The highest and lowest rates of down-expression were 1.4-fold and 16.37-fold, respectively. Moreover, these results were consistent with phenotypic observations. Conclusion: However, it is recommended to conduct further studies on gene expression and bacterial adhesion to surfaces to prove whether ZnO nanoparticles could completely prevent UPEC adhesion.
Keywords: UTI, UPEC, ZnO nanoparticle
Full-Text [PDF 351 kb]   (1836 Downloads)    
Article Type: Research | Subject: Basic medical sciences

References
1. Zhang L, Foxman B. Molecular epidemiology of Escherichia coli mediated urinary tract infections. Frontiers in bioscience. 2003;8:e235-e44. [DOI:10.2741/1007]
2. Soto SM, Guiral E, Marco F, Vila J. Biofilm Formation in Uropathogenic Escherichia coli Strains: Relationship with Urovirulence Factors and Antimicrobial Resistance. Clinical Management of Complicated Urinary Tract Infection: InTech; 2011.
3. Anderson GG, Goller CC, Justice S, Hultgren SJ, Seed PC. Polysaccharide capsule and sialic acid-mediated regulation promote biofilm-like intracellular bacterial communities during cystitis. Infection and immunity. 2010;78(3):963-75. [DOI:10.1128/IAI.00925-09]
4. Hanna A, Berg M, Stout V, Razatos A. Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Applied and environmental microbiology. 2003;69(8):4474-81. [DOI:10.1128/AEM.69.8.4474-4481.2003]
5. Amalaradjou MAR, Narayanan A, Venkitanarayanan K. Trans-cinnamaldehyde decreases attachment and invasion of uropathogenic Escherichia coli in urinary tract epithelial cells by modulating virulence gene expression. The Journal of urology. 2011;185(4):1526-31. [DOI:10.1016/j.juro.2010.11.078]
6. Heydari H, Shokrollahi MR, Movahedi Z. Frequency of type 1 fimbriae among E. coli subtypes isolated from patients with urinary and gastrointestinal tract infection. Life Sci J. 2013;10(7): 578-82.
7. Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Current opinion in microbiology. 2014;18:96-104. [DOI:10.1016/j.mib.2014.02.008]
8. Shrestha A, Zhilong S, Gee NK, Kishen A. Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. Journal of endodontics. 2010;36(6):1030-5. [DOI:10.1016/j.joen.2010.02.008]
9. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, et al. Antibacterial properties of nanoparticles. Trends in biotechnology. 2012;30(10):499-511. [DOI:10.1016/j.tibtech.2012.06.004]
10. Huh AJ, Kwon YJ. "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release. 2011;156(2):128-45. [DOI:10.1016/j.jconrel.2011.07.002]
11. Shakerimoghaddam A, Ghaemi EA, Jamalli A. Zinc oxide nanoparticle reduced biofilm formation and antigen 43 expressions in uropathogenic Escherichia coli. Iranian Journal of Basic Medical Sciences. 2017;20(4):451-6.
12. Samet M, Ghaemi E, Jahanpur S, Jamalli A. Evaluation of biofilm-forming capabilities of urinary Escherichia coli isolates in microtiter plate using two different culture media. International Journal Of Molecular And Clinical Microbiology. 2013;3(1):244-7.
13. Naves P, Del Prado G, Huelves L, Gracia M, Ruiz V, Blanco J, et al. Measurement of biofilm formation by clinical isolates of Escherichia coli is method‐dependent. Journal of applied microbiology. 2008;105(2):585-90. [DOI:10.1111/j.1365-2672.2008.03791.x]
14. Pusz P, Bok E, Mazurek J, Stosik M, Baldy-Chudzik K. Type 1 fimbriae in commensal Escherichia coli derived from healthy humans. Acta biochimica Polonica. 2014;61(2):389-92.
15. Viveiros M, Dupont M, Rodrigues L, Couto I, Davin-Regli A, Martins M, et al. Antibiotic stress, genetic response and altered permeability of E. coli. PloS one. 2007;2(4):e365. [DOI:10.1371/journal.pone.0000365]
16. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature protocols. 2008;3(6):1101-8. [DOI:10.1038/nprot.2008.73]
17. Burt SA, van der Zee R, Koets AP, de Graaff AM, van Knapen F, Gaastra W, et al. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157: H7. Applied and environmental microbiology. 2007;73(14):4484-90. [DOI:10.1128/AEM.00340-07]
18. Lee J-H, Kim Y-G, Cho MH, Lee J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiological research. 2014;169(12):888-96. [DOI:10.1016/j.micres.2014.05.005]
19. Islam s. Effect of nitric oxide on biofilm formation by Escherichi a coli. uppsalat universitet. 2008;5(3):17.
20. Burt SA, van der Zee R, Koets AP, de Graaff AM, van Knapen F, Gaastra W, et al. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157: H7. Applied and environmental microbiology. 2007;73(14):4484-90. [DOI:10.1128/AEM.00340-07]
21. Lee J-H, Kim Y-G, Cho MH, Lee J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiological research. 2014;169(12):888-96. [DOI:10.1016/j.micres.2014.05.005]
22. Islam s. Effect of nitric oxide on biofilm formation by Escherichi a coli. uppsalat universitet. 2008;5(3):17.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Clinical and Basic Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).