Overexpression of Long Noncoding RNA POU3F3 in Esophageal Squamous Cell Carcinoma is Associated with TNM Stage and Family History

Halime Rahimnia¹, Abdolvahab Moradi², Naemeh Javid², Yasaman Fateri¹, Shabbou Bahramian², Zahra Roohinejad³, Hossein Sabouri³, Eisa Jorjani*¹

1. Department of Biology, Gonbad Kavous University, Gonbad Kavous, Iran
2. Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
3. Department of Plant Production, Gonbad Kavous University, Gonbad Kavous, Iran

ABSTRACT

Background and objectives: Esophageal cancer (EC) is the second most common gastrointestinal cancer, and esophageal squamous cell carcinoma (ESCC) is the dominant type of EC in Iran. One of the most important challenges in cancer management is the early diagnosis. As tumor suppressors or oncogenes, long non-coding RNAs (lncRNAs) play a vital role in tumor initiation, progression and metastasis. Recent studies have reported that assessing expression of lncRNAs might have prognostic or diagnostic potential for ESCC. In this study, we evaluated expression of Inc-POU3F3 in ESCC and its relationship with some clinical features of the disease.

Methods: Blood samples from 32 cancer patients (18 males and 14 females) and 32 healthy individuals were collected from the Biobank of Sayyad Shirazi Hospital and the Danesh Medical Diagnostic Laboratory in Gorgan (Golestan Province, Iran), respectively. The subjects were matched in terms of age and gender. Following total RNA extraction and cDNA synthesis, quantitative real-time PCR was performed using RealQ Plus 2x Master Mix Green (Ampliqon, Denmark) in the ABI Applied Biosystems 7300 device.

Results: The Inc-POU3F3 was significantly overexpressed in samples from ESCC patients compared to controls. The increased Inc-POU3F3 expression was significantly correlated with family history (P=0.03) and TNM stage (P=0.02).

Conclusions: Our findings suggest that Inc-POU3F3 may be used as a diagnostic biomarker for ESCC. However, further studies with a larger sample size are required to confirm this finding.

KEYWORDS: Esophageal cancer, ESCC, lncRNA, Inc-POU3F3

Received: 2018/12/12 Revised: 2019/01/03 Published: 2019/01/22

*Correspondence: Eisa Jorjani
Address: Department of Biology, Gonbad Kavous University, Gonbad Kavous, Iran
Telephone: +98 911 170 4665 Email: eisa_jorjani@yahoo.com
INTRODUCTION
Cancer is a genetic disorder characterized by uncontrolled growth, proliferation and spread of abnormal cells (1, 2). Esophageal cancer (EC) is the eighth most common cancer and the sixth most frequent cause of cancer death worldwide (3, 4). In Iran, an estimated 35,000 deaths from cancer occur every year, 5800 of which are related to EC. The highest rates of EC have been found in the Golestan and the North Khorasan Provinces of Iran (5, 6). The main types of EC include esophageal squamous cell carcinoma (ESCC) which predominates in Iran and esophageal adenocarcinoma (EA). Despite recent advances in the treatment of ESCC, it is difficult to diagnose early stages of the disease. Hence, identification of effective biomarkers is essential for the early diagnosis and treatment of the disease (7, 8).

According to recent extensive genomic transcription studies, about 2% of the human genome codes for messenger RNA (mRNA) that translates into protein. However, a very large part of the genome transcribes into non-coding RNAs (ncRNAs) that function at RNA level. Long ncRNAs (lncRNAs) are longer than 200 nucleotides and do not break up into smaller RNA molecules (9, 10). A number of investigations have recently confirmed the aberrant expression of lncRNAs in EC. For instance, Lv et al. revealed increased level of lncRNA HOTAIR in ESCC, which was associated with tumor progression and poor prognosis (11). In a study by Hu et al., lncRNA MALAT1 was found to be an oncogene in ESCC and its high expression was associated with clinical stage, primary tumor size and metastasis of the lymph nodes. This study also demonstrated that this lncRNA could regulate ESCC growth by redirecting the ATM-CHK2 pathway (12). In a group of 62 patients with ESCC, significant overexpression of TUG1 in ESCC tissues compared to adjacent normal tissues was associated with a family history. Besides, silencing TUG1 has been shown to inhibit proliferation, migration and cell cycle progression in ESCC cells by using small interfering RNA (13).

Lnc-POU3F3 is a 747-nucleotide transcript containing four exons, which is located on the reverse strand of chromosome 2q12.1. It is transcribed from upstream of the POU3F3 gene, a member of the class III POU family of transcription factors (14-16). Li et al. and Tong et al. reported increased expression of lncRNA POU3F3 in ESCC (14, 15). However, these results were only reported from China, and therefore cannot be generalized to other areas. In the present study, we evaluate expression pattern of lnc-POU3F3 in total blood samples of patients with ESCC and healthy controls. In addition, we examined the relationship between lnc-POU3F3 expression and clinical features of ESCC.

MATERIALS AND METHODS
Blood samples from 32 cancer patients (18 males and 14 females) and 32 healthy individuals were collected from the Biobank of Sayyad Shirazi Hospital and the Danesh Medical Diagnostic Laboratory in Gorgan (Golestan Province, Iran), respectively. All samples were transferred to the laboratory under appropriate temperature and maintained at -80 °C until RNA extraction. The subjects were matched in terms of age and gender. Mean age of patients and controls was 59±14 and 60±13 years, respectively. Extraction of total RNA from the blood samples was performed using Trizol reagent (Invitrogen, CA, USA). The extracted total RNA was reverse transcribed in a final volume of 20 μL using random primers and cDNA synthesis kit (Takara, Japan) according to the manufacturer’s instructions. Subsequently, 2 μL of cDNA were used for quantitative real-time PCR (qRT-PCR) using RealQ Plus 2x Master Mix Green (Ampliqon, Denmark) in the ABI Applied Biosystems 7300 device based on the manufacturer's protocol: 95 °C for 15 minutes, 40 cycles of 95 °C for 15 seconds, 59 °C for 45 seconds and 72 °C for 40 seconds. Expression of the
target gene was normalized to that of GAPDH, which was used as internal control. Relative quantitative value was expressed using the 2-ΔΔCt method. Sequences of the primers used in this study are as follows: POU3F3-F: 5'-AAT CAC TGC AAT TGA AGG AAA AA-3' and POU3F3-R: 5'-CCT TGT TTT CCA ACC CTT AGA CT-3', GAPDH-F: 5'-GAA GGT GAA GGT CGG AGT-3', and GAPDH-R: 5'-GAA GAT GGT GAT GGG ATT TC-3'. Mean values and standard deviation of data were calculated using Microsoft Excel 2013. Statistical analysis was performed using SPSS 16.0 software. Differences between the groups were analyzed with t-test. A P-value of <0.05 was considered statistically significant.

RESULTS
LncRNA POU3F3 was expressed in both cancer and control samples. We observed that the lncRNA was significantly overexpressed in blood samples of ESCC patients compared to that of the control samples (P=0.01) (Figure 1).

Figure 1. Relative expression level of POU3F3 in samples from ESCC patients and healthy controls
The overexpression of lncRNA POU3F3 was significantly associated with stage III ESCC (P=0.03) and family history (P=0.02). However, no association was observed between the lncRNA POU3F3 expression and other clinicopathologic factors in ESCC patients, including age, sex and metastasis (Table 1).

Table 1. Association between clinicopathological factors and lnc-POU3F3 expression in ESCC patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Number</th>
<th>Percent</th>
<th>Fold change</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>10</td>
<td>31.25</td>
<td>1.142365</td>
<td>0.880</td>
</tr>
<tr>
<td>≥50</td>
<td>22</td>
<td>68.75</td>
<td>1.161682</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>18</td>
<td>56.25</td>
<td>1.198829</td>
<td>0.405</td>
</tr>
<tr>
<td>Female</td>
<td>14</td>
<td>43.75</td>
<td>1.101504</td>
<td></td>
</tr>
<tr>
<td>Family history</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>9</td>
<td>28.13</td>
<td>1.260205</td>
<td>0.024</td>
</tr>
<tr>
<td>Negative</td>
<td>23</td>
<td>71.87</td>
<td>1.121597</td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>12</td>
<td>37.5</td>
<td>1.19999</td>
<td>0.587</td>
</tr>
<tr>
<td>Negative</td>
<td>20</td>
<td>62.5</td>
<td>1.133804</td>
<td></td>
</tr>
<tr>
<td>Metastasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>16</td>
<td>50</td>
<td>1.180167</td>
<td>0.223</td>
</tr>
<tr>
<td>M1</td>
<td>6</td>
<td>18.75</td>
<td>0.952754</td>
<td></td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1, T2</td>
<td>10</td>
<td>31.25</td>
<td>1.007284</td>
<td>0.032</td>
</tr>
<tr>
<td>T3</td>
<td>22</td>
<td>68.75</td>
<td>1.217071</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

We evaluated the expression of lncRNA POU3F3 in blood samples from ESCC patients and healthy controls using qRT-PCR. The expression of lncRNA POU3F3 in ESCC blood samples was significantly higher than in control samples. Li et al. also reported the significant overexpression of lncRNA POU3F3 in ESCC tissues compared to adjacent normal tissues (15). Moreover, Tong et al. demonstrated an increase in the expression of lncRNA POU3F3 in plasma of ESCC patients compared to that of healthy controls (14). In addition to ESCC, the significant overexpression of this lncRNA has been detected in gastric, colorectal and glioma cancers (16-18).

In the present study, we investigated the relationship between the expression of lncRNA POU3F3 and clinical features of ESCC including age, sex, TNM stage, smoking and family history. Our findings showed that the expression of this lncRNA was significantly associated with TNM stage and family history. Contrary to this finding, Tong et al. found no significant correlation between lncRNA POU3F3 expression and clinical features of ESCC (14). This observation suggests that lncRNA POU3F3 may have an oncogenic role in the development of ESCC.

Changes in the lncRNA POU3F3 expression in ESCC patients have been mainly reported from China, and therefore cannot be generalized to other regions. Therefore, we assessed the expression level of this lncRNA in the Golestan Province, which is an ESCC hotspot in Iran. Investigating the expression of this lncRNA in other countries and regions could be beneficial.

CONCLUSION

Our results showed significant correlation of lncRNA POU3F3 overexpression with family history and TNM stage in ESCC patients. This may indicate that the lncRNA POU3F3 may play an important role in the development of ESCC.
ACKNOWLEDGEMENTS
We would like to thank Masood Bazori for his insightful comments and helpful suggestions.

DECLARATIONS
Funding
This study received financial support from the Gonbad Kavous University, Iran (thesis code: 203226).

Ethics approvals and consent to participate
Written informed consent was obtained from all participants.

Conflict of interest
The authors declare that there is no conflict of interest.

REFERENCES
15. Li W, Zheng J, Deng J, You Y, Wu H, Li N, et al. Increased levels of the long intergenic non-

